Pattern Based Feature Construction in Semantic Data Mining
نویسندگان
چکیده
The authors propose a new method for mining sets of patterns for classification, where patterns are represented as SPARQL queries over RDFS. The method contributes to so-called semantic data mining, a data mining approach where domain ontologies are used as background knowledge, and where the new challenge is to mine knowledge encoded in domain ontologies, rather than only purely empirical data. The authors have developed a tool that implements this approach. Using this the authors have conducted an experimental evaluation including comparison of our method to state-of-the-art approaches to classification of semantic data and an experimental study within emerging subfield of meta-learning called semantic meta-mining. The most important research contributions of the paper to the state-of-art are as follows. For pattern mining research or relational learning in general, the paper contributes a new algorithm for discovery of new type of patterns. For Semantic Web research, it theoretically and empirically illustrates how semantic, structured data can be used in traditional machine learning methods through a pattern-based approach for constructing semantic features.
منابع مشابه
Semantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملA Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملFeature Engineering in Persian Dependency Parser
Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Semantic Web Inf. Syst.
دوره 10 شماره
صفحات -
تاریخ انتشار 2014